Compressive Sensing and Information Theory

نویسنده

  • Siyu Liu
چکیده

In a series of recent work [5, 4], the theory of compressive sensing has been examined from an information theory perspective. Novel results regarding noisy compressive sensing have been found while viewing the compressive sensing problem as a communication channel. This perspective led to a new approach of solving the compressive sensing problem through a Bayesian approach. Belief propagation, a widely applied iterative decoding approach from coding theory, has been employed to solve the compressive sensing problem. Empirical results show superior performance of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantized Compressive Sensing Measurement Based on Improved Subspace Pursuit Algorithm

Recent research results in compressive sensing have shown that sparse signals can be recovered from a small number of random measurements. Whether quantized compressive measurements can provide an efficient representation of sparse signals in information-theoretic needs discuss. In this paper, the distortion rate functions are used as a tool to research the quantizing compressive sensing measur...

متن کامل

Compressive sensing: a paradigm shift in signal processing

We survey a new paradigm in signal processing known as "compressive sensing". Contrary to old practices of data acquisition and reconstruction based on the ShannonNyquist sampling principle, the new theory shows that it is possible to reconstruct images or signals of scientific interest accurately and even exactly from a number of samples which is far smaller than the desired resolution of the ...

متن کامل

Compressive Sensing

Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as l1-minimization can be used for recovery. The theory has many potential applications in signal processing and imaging. This chapter gives an introduction and overvi...

متن کامل

Feedback Reduction of Spatially Multiplexed MIMO Systems Using Compressive Sensing

In this paper we analyze spatially multiplexed MIMO systems with limited Channel State Information (CSI) and zero forcing (ZF) linear signal detection technique. Two schemes were considered: Quantization Codebook (QC) and Compressive Sensing (CS). Compressive Sensing is used to generate a reduced CSI feedback to the transmitter in order to reduce feedback load into the system. Performance of th...

متن کامل

One-Bit Compressive Sensing with Partial Support Information

This work develops novel algorithms for incorporating prior-support information into the field of One-Bit Compressed Sensing. Traditionally, Compressed Sensing is used for acquiring high-dimensional signals from few linear measurements. In applications, it is often the case that we have some knowledge of the structure of our signal(s) beforehand, and thus we would like to leverage it to attain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010